Exten		A algorithm and evan or interaction or bio			lihood ra	atio tests
EROT	A. Dubois ⁽¹⁾	, M. Lavielle ⁽²⁾ , S. Gsteig	jer ⁽³⁾ , E. Pigeolet ⁽³	⁾ and F. Men	tré ⁽¹⁾	
	erm ¹⁶ la rodarcita médicata	(1) UMR738 INSERM, Universi (2) INRIA, Sa	clay, France.	nce.	INRIA ไ) NOVARTIS
	Introducti	(3) Novartis Pharma A	G, Basel, Switzerland.	Results		
Drug inte		fferent formulations different ?	 Evaluation of the SAE 		ossover trials w	vith 2 or 4 periods
	on test H_0 : no difference)		 ♦ Relative bias (%) 			fuit 2 of 4 perious,
 Bioequivalence studies: are PK of different formulations equivalent ? (bioequivalence test H₀: inequivalence) 		Fixed effect	Rich design <2%	Sparse desig	<u>jn</u>	
✦ Standard	approach (FDA ^[1,2] and EM	EA ^[3,4])	Variance components	<10%	<20%	
	e AUC and Cmax by non com	partmental analysis	-	-10/0	-2070	
	log parameters		♦ Relative RMSE (%)	Mean PK parameter	VF	
	10 samples per subject		% 	% - R -		
	r mixed effects models		응 및 - 평 및 - 2 4 2 월 및 - 2 4 2	2 4 👷 2 4	4 2 4	
	ata analysis for all subjects			2 4 0 2 4 Sparse Rich	4 2 4	
	nples per subject \rightarrow study on p		CIF	Treatment effect	V/F	
	Objective		R - 2 2	2	2 2 4	
 Adapt and evaluate the SAEM algorithm in MONOLIX software for the analysis of crossover trials 				2 4 2 4 4 2 4 5 parte Rich	4 4 4	Crossover trials with 2 (2)
✦ Develop †	the likelihood ratio test (LRT) for bioequivalence	design		design	or 4 (4) periods Low variability
✦ Evaluate	by simulation the type I erro	or of Wald tests and LRT	CIF 월 -	Between-subject variability	V/F	High variability
Methods			EAAGE (9)	8- 8- 2 4 8- ² 4	2 4 2 4	
✦ Statistical	l model			Sparze Rich	\$ 2 4 Sparse	
♦ Data: ine	dividual plasma concentration	s under both formulations	CIF	Within-subject variability	V/F	
♦ Estimation			8 - 8 -	8 - 8 -	2	
➤ Mean PK parameters for the reference formulation			8 20 5	2 8- 2 4 8- 2 4	4 4 2 4	
Treatment ($\beta_{\rm T}$), period ($\beta_{\rm P}$) and sequence ($\beta_{\rm S}$) effect			- 4 Rich	Sparse Rich	4 Spirse	
 Between (BSV) and within subject (WSV) variability Between the structure of the st			▼ RMSE (rich design)) < RMSE (sparse d	esign)	
 Parameters estimation by maximum likelihood Enterprise of the CAEN observition to MCN (Concerding to the CAEN) 			≭ RMSE (4 periods) <		0 /	
↔ Extension of the SAEM algorithm to estimate WSV (Generalization of ^[5]) $↔$ Wald test: estimation with the complete model (log likelihood L_{all})			▼ RMSE satisfactory	except for the WSV	on V/F for the	low variability
	-	del, with $\beta_{\rm T}$ fixed to log(0.8) and	and 2 periods			
to log(1	.25) for the tested parameter (l	log likelihood $L_{\log(0.8)}$ and $L_{\log(1.25)}$	 Type I error (crossove 	r trials with 2 peri	.ods)	
	st on the treatment effect β_T		و و -	2-	W L	
	Interaction test	Bioequivalence test ^[8]	₿	v		
	$\beta = 1 \alpha \sigma(0.8)$	$\beta \leq \log(0.8) \text{ or } \beta \geq \log(1.25)$				W: Wald test L: LRT
H ₀	$\beta_T = \log(0.8)$	$\beta_T \leq \log(0.8) \text{ or } \beta_T \geq \log(1.25)$	Rich	Sparze Ric Bioequivalence test	ih Sparse	Low variability High variability Horizontal lines: the
Wald test [6,7]	$\log(0.8) \notin CI_{95\%}(\beta_{\Gamma})$	$CI_{90\%}(\beta_{T}) \in [\log(0.8); \log(1.25)]$	CIF	ę	VF	nominal level at 5% and its 95% prediction
Reject H ₀ if				V L	W E	interval for 1000 replicates ([3.7%; 6.4%])
LRT	$-2 \times (L_{\log(0.8)} - L_{all}) \ge \chi_1^2(0.95)$	$\beta_T \in [\log(0.8); \log(1.25)] -2 \times (L_{\log(0.8)} - L_{all}) \ge \chi_1^2(0.9) -2 \times (L_{\log(1.25)} - L_{all}) \ge \chi_1^2(0.9)$		······································	ī	
Reject H ₀ if		$2 \times (L_{\log(0.8)} - L_{all}) \ge \chi_1^2(0.9)$	o	Sparse Ric	th Sparse design	
		$2 \wedge (L_{\log(1.25)} = L_{all}) = \chi_1(0.5)$	♦ Type I error at 5% fo	r the rich design	-	
✦ Simulatio	5	add with first order absorption	\diamond Slight inflation of the type I error for the sparse design			
Theophylline PK: one-compartment model with first order absorption and elimination (parameters k _a , Cl/F, V/F)			\diamond Similar results for the Wald test and LRT, and for interaction and			
	with 40 subjects: 10 (rich) or 3		bioequivalence tests			
-	er trials with two or four perio		Conclusion			
	nt effect on Cl/F and V/F		✦ SAEM algorithm in N	IONOLIX softwa	ire	
★ 1000 simulations under $H_{0,80}$: $\beta_{T,CU/F}$ =log(0.8) and $\beta_{T,V/F}$ =log(0.8) ★ 1000 simulations under $H_{0,125}$: $\beta_{T,CU/F}$ =log(1.25) and $\beta_{T,V/F}$ =log(1.25)			 Accurate extension for estimation of WSV and crossover trials analysis 			

 \diamond Two levels of variability (residual error=10%)

		BSV	WSV	
-	Low	10% for V/F and 20% for $k_{\rm a}$ and Cl/F	BSV/2	
	High	50%	15%	

- ✤ Evaluation of the SAEM algorithm: relative bias and RMSE
- ✤ Type I error estimation: proportion of rejected H₀

[1] FDA. Guidance on drug interaction studies (2006)

[2] FDA. Guidance on statistical approaches to establishing bioequivalence (2001)

[7] Panhard X, Taburet AM, Piketti C and Mentré F. Statistics in Medicine. 26: 1268 (2007)
 [8] Schuirmann DJ. Journal of Pharmacokinetics and Biopharmaceutics. 15: 657 (1987)

Good statistical properties under asymptotic conditions

[4] EMEA. Guidance on investigation of bioavailability and bioequivalence (2001)

Model-based interaction or bioequivalence tests

♦ Good tool applicable to rich and sparse design

[3] EMEA. Guidance on drug interaction studies (1998)

[6] Panhard X and Samson A. *Biostatistics*. 10: 121 (2009)
[6] Panhard X and Mentré F. *Statistics in Medicine*. 24: 1509 (2005)